
B.Sc. [Computer Science]
V - Semester

130 54

LAB: RELATIONAL DATABASE
MANAGEMENT SYSTEMS

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Author:

Dr. Kavita Saini, Associate Professor, Galgotias University, Greater Noida

"The copyright shall be vested with Alagappa University"

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

Work Order No.AU/DDE/DE12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies…….

BLOCK 1: TABLE MANIPULATION
Table: Creation, Renaming a Table, Copying Another Table, Dropping a Table
Table Description: Describing Table Definitions, Modifying Tables

BLOCK 2: SQL QUERIES AND SUB QUERIES
SQL Queries: Queries, Sub Queries, and Aggregate Functions
DDL: Experiments Using Database DDL SQL Statements
DML: Experiment Using Database DML SQL Statements
DCL: Experiment Using Database DCL SQL Statements

BLOCK 3: INDEX AND VIEW
Index: Experiment Using Database Index Creation, Renaming an Index, Copying Another Index, Dropping an Index
Views: Create Views, Partition and Locks

BLOCK 4: EXCEPTION HANDLING AND PL/SQL
Exception Handling: PL/SQL Procedure for Application Using Exception Handling
Cursor: PL/SQL Procedure for Application Using Cursors
Trigger: PL/SQL Procedure for Application Using Triggers
Package: PL/SQL Procedure for Application Using Package
Reports: DBMS Programs to Prepare Report Using Functions

BLOCK 5: APPLICATION DEVELOPMENT
Design and Develop Application: Library Information System, Students Mark Sheet Processing, Telephone Directory
Maintenance, Gas Booking and Delivering, Electricity Bill Processing, Bank Transaction, Pay Roll Processing. Personal
Information System, Question Database and Conducting Quiz and Personal Diary

LAB: RELATIONAL DATABASE
MANAGEMENT SYSTEMS

INTRODUCTION

Rapid globalization coupled with the growth of the Internet and information technology has led to a complete
transformation in the way organizations function today. Organizations require those information systems
that would provide them a ‘Competitive Strength’ by handling online operations, controlling operational
and transactional applications, and implementing the management control tools. All this demands the Relational
DataBase Management System or RDBMS which can serve both the decision support and the transaction
processing requirements. Technically, the present RDBMS handles the distributed heterogeneous data
sources, software environments and hardware platforms. Precisely, RDBMS is a DataBase Management
System or DBMS that is based on the relational model introduced by Edgar F. Codd, who was an English
computer scientist. Edgar F. Codd, while working for IBM, invented the relational model for database
management, the theoretical basis for relational databases and relational database management systems.
He made other valuable contributions to computer science, but the relational model, a very influential
general theory of data management, remains his most mentioned, analysed and celebrated achievement.

The most widely used commercial and open source databases are based on the relational model.
Characteristically, a RDBMS is a DBMS in which data is stored in tables and the relationships among the
data are also stored in tables. This stored data can be accessed or reassembled in many different ways
without having to change the table forms. RDBMS program lets you create, update and manage a relational
database. In spite of repeated challenges by competing technologies, as well as the claim by some experts
that no current RDBMS has fully implemented relational principles, the majority of new corporate databases
are still being created and managed with an RDBMS. So, understanding RDBMS through ‘Laboratory
Manuals’ has become extremely important.

This laboratory manual, RELATIONAL DATABASE MANAGEMENT SYSTEMS, is intended for
the students of undergraduate courses in the subject of RDBMS. This laboratory manual typically contains
‘Practical/ Laboratory Sessions’ related to RDBMS, covering various significant topics on the subject to
enhance the understanding. This laboratory manual will help the students to understand the concepts, such
as data normalization, link between tables by means of foreign keys and other relevant database concepts,
menu-driven query processing and reports, the SQL commands, the cursor, triggers, and packages. In
addition, the students will be able to write SQL queries, PL/SQL statements and the database applications
using SQL. Students are advised to thoroughly go through this laboratory manual rather than only topics
mentioned in the syllabus as practical aspects are the key to understand the conceptual visualization of
theoretical aspects covered in the textbooks.

NOTES

Self-Instructional
Material 1

Relational Database
Management SystemsRELATIONAL DATABASE MANAGEMENT SYSTEMS

A Relational Database Management System (RDBMS) is a collection of
database and stored procedures. A RDBMS enables you to store, extract and
manage important information from a database. It is a software that is used to
maintain data security and data integrity in a structured database.

RDBMS helps in maintaining and retrieving data in different forms. There
are various tools available for RDBMS, such as Oracle, Ingres, Sybase, Microsoft
SQL Server, MS-Access, IBM-Db-2, MySQL.

Introduction to Oracle

Oracle is a secure portable and powerful database management system of Oracle
Corporation. Oracle database is also termed as Oracle Database. It is compatible
and connectable with almost all operating systems and machines.

Oracle database is based on relational data model and a non-procedural
language called Structure Query Language (SQL). Oracle database is a tool that
supports storing managing and organization the data.

Structured Query Language (SQL)

SQL is query language used for all database relation management systems. It is a
standard language for all RDBMS’s. It could be classified into various types where
every sub-variety plays its own role and different purpose SQL commands which
can further be classified as:-

 Data Definition Language (DDL)

 Data Manipulation Language (DML)

 Data Control Language (DCL)

 Transaction Control Language (TCL)

Data Types in Oracle

When you define any table, it is required to specify the data type of fields. The
main categories of data types are:-

Data Type Size

Char (size) Maximum size of 2000 bytes

Varchar2 (size) Maximum size of 4000 bytes

Long Maximum size of 2GB

Raw (size) Maximum size of 2000 bytes

long raw (size) Maximum size of 2GB

Number(p, s) Precision can range from 1 to 38.

Scale can range from -84 to 127.

Relational Database
Management Systems

NOTES

Self-Instructional
2 Material

Data Type Size

Date A date between Jan 1, 4712 BC and

Dec 31, 9999 AD.

BLOCK 1: TABLE MANIPULATION

This block will cover the following topics:

1. Table Creation, Renaming a Table, Copying Another Table, Dropping
a Table.

2. Table Description: Describing Table Definitions, Modifying Tables.

Table

A table is represented in two dimensional structure containing rows and columns.
It contains interrelated data, for example, an employee table contains data about
employees only, i.e., Emp_ID, name, designation, etc. A table is also termed as a
relation. A table is depicted in following table:

 Emp_ID Name Designation Salary

5001 Tom Sr. Programmer 38,000

5002 Merlisa Proj. Leader 60,000

5003 George Programmer 26,000

Table - Employee

Getting Started with SQL:

To work with SQL, *Plus Oracle should be installed on computer system. The
following steps are required to follow for invoking SQL Plus:

1. Click on Start Button.

2. Point on All Programs.

3. Point on Oracle Database 10g Express Edition.

4. Click on Go to Database Home Page.

NOTES

Self-Instructional
Material 3

Relational Database
Management Systems

Click on Go to Database Home Page

The following Screen will appear:

Relational Database
Management Systems

NOTES

Self-Instructional
4 Material

Note:

Oracle user name and password may be different and need to be verified in lab. In
this manual, User name is Demo and Password is Demo.

1. Enter the User Name Demo, Password Demo (Consult to your Lab
Instructor for user name and password)

2. Click on “Login” button.

Enter the User name and Password as created during installation. The
following screen will appear. In this screen click on SQL.

After clicking on SQL following screen will appear. Click on SQL Command
to go to SQL command window.

NOTES

Self-Instructional
Material 5

Relational Database
Management Systems

 After clicking on SQL Command following command screen will appear,
where we can type and run all SQL commands:

Creating a Table

This is a Data Definition Language (DDL) command that is used to define the
structure of any table. In a table structure you can define various fields, their data
types and constraints as per the requirements.

Syntax:
Create table <table_name >

(column_name data type(size), column_name data type(size),
…);

Example:

1. Create a table Course.

Column Name Data Type Size

C_Code varchar2 15

C_Name varchar2 15

Duration number 8

Fee number 10, 2

The SQL command to create table is as follows:
Create Table Course

(

C_Code varchar (15), C_Name varchar (15),

Duration number (8), Fee number (10, 2)

);

Relational Database
Management Systems

NOTES

Self-Instructional
6 Material

The above command will create table Course and Oracle will prompt a
message as shown below:

Example-2

Create a table Student

Column Name Data Type Size

Roll_No Varchar 10

Name Varchar 10

Address Varchar 35

C_Code Varchar 8

The above command will create a table structure to store student’s
information. Where Roll_No, Name, Address and C_Code are the field names
and varchar is a data type.

Rename Tables

To rename table, you can use Rename command.

The Syntax for Alter command:
Rename old_table_name to new_table_name;

NOTES

Self-Instructional
Material 7

Relational Database
Management Systems

 Example:

Dropping a Table

When a SQL table is no more required, you can get rid of the table by using
DROP command. Drop table is a Data Definition Language (DDL). Drop command
is used to drop any object, such as table, index, view, package and function.

The Syntax to drop a table:
Drop table <table_name >

Example:

The above command will remove the course tables.

TRUNCATE:

This command will remove the data permanently but the structure will not be
removed.

Syntax: Truncate Table <Table name>;

Example: Truncate Table Student;

Relational Database
Management Systems

NOTES

Self-Instructional
8 Material

Difference between Truncate and Delete:-

 By using Truncate command, data will be removed permanently and will
not get back whereas by using Delete command, data will be removed
temporarily and get back by using Roll Back command.

 By using Delete command, data will be removed based on the condition
‘where as’ or by using Truncate command if there is no condition.

 Truncate is a DDL command and Delete is a DML command.

Try yourself

1. Write SQL Queries to create following tables:

Table: Student:

SID Name Login Age gpa

Table: Enrolled:

SID CID grade

2. Write SQL Queries to add address column in student tables.

3. Write SQL Queries to drop address column in student tables.

4. Write SQL Queries to delete student and enrolled tables.

5. Delete the student table.

Describing a Table:

To see the table structure Oracle provides command Describe (or Desc).

The Syntax to describe a table:

Describe <table_name>

Or

Desc <table_name>

NOTES

Self-Instructional
Material 9

Relational Database
Management Systems

Example

Describe Course

Or Desc Course

Command to Modifying Table:

Table modification may be required in future if requirements gets change after
creating table. Modification includes:

 Add a New Column

 Change Data Type of an Existing Column

 Modify the Length of on Existing Column

 Delete any Column

There are certain points to remember while modifying table:

 If table column contains the values, then the length of column could be
increase.

 To change the data type, column should be empty.

 To decrease the size of data type, column should be empty.

Add a New Column:

The Syntax for alter command:
Alter table <table_name >

ADD (column_name data type (length), column_name data
type(length), …);

Example:
Alter table STUDENT add (MOBILE Number (10));

Relational Database
Management Systems

NOTES

Self-Instructional
10 Material

The above command will add a new column, MOBILE in STUDENT table.
You could see the new structure of STUDENT table:

desc STUDENT;

To change data type of an existing column

The Syntax for alter command:
Alter table <table_name> modify (column data type (length),
column data type (length),…);

Example:
Alter table course modify c_code char (15);

NOTES

Self-Instructional
Material 11

Relational Database
Management Systems

The above command will change the data type of c_code field from varchar
to char.

To modify the length of an existing column:

The Syntax for alter command:
Alter table <table_name> modify (column data type (length),

column data type (length),…);

Example:
Alter table student modify (name varchar (20), address
varchar (40));

The above command will change the length of name column from 15 to 20
and address from 35 to 40.

After altering student table structure will look like:

Relational Database
Management Systems

NOTES

Self-Instructional
12 Material

The above command will describe the structure of COURSE table as shown
below:

To Delete any Column

The Syntax for alter command:
Alter table <table name> drop column column_name;

NOTES

Self-Instructional
Material 13

Relational Database
Management Systems

Example
Alter table student drop column mobile;

The above command will delete the column mobile form students table.

The Syntax for alter command:
Alter table <table_name> modify (column data type (length),

column data type (length),…);

Example:

Relational Database
Management Systems

NOTES

Self-Instructional
14 Material

BLOCK 2: SQL QUERIES AND SUB QUERIES

This block will discuss about the following topics:

 SQL Queries: Queries, Sub Queries, and aggregate functions

 DDL: Experiments using database DDL SQL statements

 DML: Experiment using database DML SQL statements

 DCL: Experiment using database DCL SQL statements

SQL Queries:

DDL: EXPERIMENTS USING DDL SQL STATEMENTS

Data Definition Language (DDL)

Data definition language commands are used for creating, modifying and removing
database objects wherein the object could be a table cursor, view trigger or a
sequence.

Data definition language commands are:

 CREATE

 ALTER

 DROP

Data Constraints

It is very important that whatever you store into your tables is as per the need of
your organization. No false or incorrect data is stored by the user either intentionally
or accidentally. Constraints are the restriction that you could put on your data to
maintain data integrity. For example, employer’s salary should not be negative
value, two students should not have the same enrollment number, etc.

The constraints help in maintaining data integrity which is one of the rules
defined by E.F. Codd.

Constraints could be specified when a table is created or even after the
table is created with the ALTER TABLE command.

Oracle provides various types of constraints as listed below:-

 PRIMARY KEY

 FOREIGN KEY OR REFERENCE KEY

 NOT NULL

 UNIQUE

 CHECK

 DEFAULT

NOTES

Self-Instructional
Material 15

Relational Database
Management Systems

Constraint could be defined at column level or at the table level. The only
difference between these two is the syntax of these two.

Note: Drop all table created previously in this manual.

NOT NULL Constraint

In database, NULL is a special value that is different from zero, space or blank. It
represents an unknown value for the column.

The NOT NULL constraint ensures that the value in column is not missing
(NULL). This constraint enforce user to enter data into a specified column. A
column with this constraint could have duplicate values but could not be null or
empty.

You must have created your E-Mail ID. When you create an E-Mail ID, it
is mandatory to fill certain entries (the field with *), those fields are the fields with
the NOT NULL constraint.

The following example creates a table book with the NOT NULL constraint
with the structure as shown below:

Column Name Data Type Size Constraint

B_Code varchar2 15

Title varchar2 40 NOT NULL

Author varchar2 15 NOT NULL

Price number 7,2

The SQL command to create table with NOT NULL constraint is as follows:

Relational Database
Management Systems

NOTES

Self-Instructional
16 Material

Book Table Structure;

The above SQL command will create a table Book where Title and Author
have NOT NULL constraints. These constraints would make it sure that both the
columns have some values during inserting and updating of data to these columns.
NOT NULL constraints could be set at column level only.

UNIQUE Constraint:

Sometimes, it is required that column must have unique values only. The unique
constraint ensures that data to the specified column data is not duplicate but it
could contain the NULL values. Let us take an example of contact number and E-
Mail ID; it is not necessary that every student has a contact number and an E-Mail
ID, if they have that will be unique only.

The following example creates a table student with the UNIQUE constraint
with the structure as shown below:

Column Name Data Type Size Constraint

Roll_No Varchar 10

Name Varchar 10

Address Varchar 35

E-Mail Varchar 20 Unique

Mobile Number 10 Unique

NOTES

Self-Instructional
Material 17

Relational Database
Management Systems

The SQL command to create table with UNIQUE constraint is as follows:

In the above example UNIQUE constraints are set at table level.

PRIMARY KEY Constraint:

A PRIMARY KEY constraint is used to uniquely identify each and every record in
a table. A Primary Key has properties of UNIQUE and NOT NULL constraints.

A PRIMARY KEY constraint has the following properties:

 A Primary Key column allows unique values only.

 It does not allow NULL value in column.

 A Primary Key column could be used for a reference in another table
(Child Table).

Example-1

The following example creates a table Course with the PRIMARY KEY constraint
with the structure as shown below:

Column Name Data Type Size Constraint

C_code varchar2 15 Primary Key

C_name varchar2 15

Duration number 8

Fee number 10,2

Relational Database
Management Systems

NOTES

Self-Instructional
18 Material

The SQL command to create table with PRIMARY KEY constraint is as
follows:

The above command will create table course which contains a Primary
Key field course code. Here, PRIMARY KEY constraint will enforce the end
user to enter Unique and Not Null values only.

Example-2

The following example creates a table Book with the PRIMARY KEY constraint
with the structure as shown below:

Column Name Data Type Size Constraint

B_code varchar2 15 Primary Key

Title varchar2 40

Author varchar2 15

Price number 7,2

The SQL command to create table with PRIMARY KEY constraint is as
follows:

NOTES

Self-Instructional
Material 19

Relational Database
Management Systems

The above command will create table Book which contains a Primary Key
field Book Code. This constraint is required to have unique and not null book
code in a library. * A table can have only and only one Primary Key.

FOREIGN KEY Constraint or REFERENCE KEY Constraint:

A Foreign Key column in a table derived values from a Primary Key of another
table that helps in establishing relationship between tables.

A table having Primary Key column is called a Master Table or a Parent
Table and a table with the Reference Key is known as a Transaction Table or a
Child Table.

A Course and Book tables created in the PRIMARY KEY constraint section
have the Primary Key columns C_code and B_code respectively. These columns
could be used to as a Reference Key in another table.

Important Points to Remember

 Reference Key column in a table must have the same data type be as specified
in Primary Key column in another table.

 Size of data type must be the same or more as defined in a Primary Key
column.

 Name of Reference Key column could be same or different as defined in
Primary Key column.

 A table may contain more than one Reference Keys.

 Reference Key’s column values could be duplicate or not null.

 Reference Key’s column can have the same values as stored in Primary
Key column.

Let us suppose that students in any University could be enrolled in the course
which are offered by that university. Course table contains the detail of all the
courses offered by the university, so C_code column in Student table must have
reference of C_code column of Course table.

The following example creates a table student with the REFERENCE KEY
constraint with the structure as shown below:

Column Name Data Type Size Constraint

Roll_No Varchar 10

Name Varchar 10

Address Varchar 35

C_code Varchar 15 Reference Key

Relational Database
Management Systems

NOTES

Self-Instructional
20 Material

The SQL command to create table with REFERENCE KEY constraint is
as follows:

Note: drop student table

Now create Student table again with Reference Key as shown below:

The above command will create Table Student which contains a Reference
Key column Course Code. This column will table reference of Course Code of
Course table when record in Student table will be inserted or updated by the user.
* A table can have more than one reference keys.

CHECK Constraint:

A CHECK constraint enforce user to enter data as specified condition. For example,
Marks in any subject should be between the ranges 0 to 100, Fee should not be
negative, Book Code must start with ‘B’, and Book Price should be between the
ranges 1 to 15000 and Employee HRA could not be more than 40% of basic
salary and so on.

NOTES

Self-Instructional
Material 21

Relational Database
Management Systems

The following example creates a table Book with the CHECK constraint
with the structure as shown below:

Column Name Data Type Size Constraint

B_Code varchar2 15 Check

Title varchar2 40

Author varchar2 15

Price number 7,2 Check

Note: drop table book created earlier.

The SQL command to create table with CHECK constraint is as follows:

The above command will create table Book which contains a check
constraints with the field Book Code and Price.

DEFAULT Constraint:

Sometimes, the value of any column for every new record is same. To maintain the
status of book in a library is either available to issue or not you must keep the
status of book as ‘T’ (Available) or ‘F’ (Issued). Every new book purchased for
library the status of book is required to be ‘T’. Default value concept is suitable
for many these types of situations.

The following example creates a table book with the DEFAULT constraint
with the structure as shown below:

Column Name Data Type Size Constraint

B_Code varchar2 15

Title varchar2 40

Author varchar2 15

Price number 7,2

Status Char 1 Default

Relational Database
Management Systems

NOTES

Self-Instructional
22 Material

The SQL command to create table with DEFAULT constraint is as follows:

The above command will create table Book which contains a default
constraints with the field status.

Multiple constraints could be set together in a table as shown below,

The following example creates a table student with the multiple constraints
with the structure as shown below:

Column Name Data Type Size Constraint

Roll_No Varchar 10 Primary Key

Name Varchar 10 Not Null

Address Varchar 35

C_code Varchar 15 Reference Key

Mobile Number 10 Unique

Note: drop Student table then create Student
table again.

The SQL command to create the above mentioned table as follows:

NOTES

Self-Instructional
Material 23

Relational Database
Management Systems

DML: EXPERIMENTS USING DML SQL STATEMENTS

Data Manipulation Language (DML)

Once a table or other object is created using data definition language, Data
Manipulation Language (DML) commands are used to insert, manipulate and
access data. DML commands helps in inserting, updating, deleting and searching
of data.

The data manipulation language statements are INSERT, DELETE, and
UPDATE.

Insert Records in Table

Once structure of a table is created the next action is to insert records on table.
Insert is a Data Manipulation Language (DML) command.

The Syntax for insert command,
Insert into <table name> values (value1, value2, …);

Few Examples to insert records in table

Example-1

To insert records data into course table the command is as follows:

Output:

Relational Database
Management Systems

NOTES

Self-Instructional
24 Material

After executing the above command system will prompt a message 1 row
created.

Note: All char, varchar and date values should be enclosed in single quotes
(‘), for example ‘MCA’, ’07-Sept-09’, ‘A-08-02’,…

Try Yourself:

1. Add five records in course table

2. Create a new table Book with the following fields and data types

 Field Name Data Type Size

 B_Code varchar 15

 Title varchar 30

 Author varchar 15

 Price Number 6, 2

3. View the structure of Book table

4. Add five records in Book table

INSERT FEW MORE RECORDS:

 Insert into course values (‘PG003’, ‘M Sc-IT’, 3, 32000.00)

 Insert into course values (‘PG002’, ‘MBA’, 2, 40000.00)

 Insert into course values (‘UG002’, ‘B SC-IT’, 3, 25000.00)

Insert Data into Specific Fields

With the above syntax of insert command it is necessary to insert data in all the
fields in the same sequence as defined in the table. But sometimes few fields are
required to update later on for example student’s subjects marks are inserted in
the table and total, percentage or grade is required to calculate later on. To deal
with such a situation you could use the following syntax:

The Syntax to insert data into selected fields only
Insert into <table name> (column1, column2, …)

values (value1, value2, …);

NOTES

Self-Instructional
Material 25

Relational Database
Management Systems

Examples

Insert Data with User Interaction

If hundreds or thousands of records are to be inserted in a table it will be very
tedious job to do it with the constant values. The other ways to insert records into
table is take input from the user and repeat the command.

Example:

Relational Database
Management Systems

NOTES

Self-Instructional
26 Material

To insert more record the same command could be repeated by putting /
and pressing enter key at SQL prompt.

You could also insert records interactively into specific fields as shown below.

Example:

Note: The ‘&’ symbol would prompt user to input data to the various variable.
The variable name that is written after ‘&’ is not required to the same as field
names.

Check Your Progress

1. Add the following data into C_code, C_name and duration fields of Course
table

C_code C_name Duration

UG001 BCA 3

UG002 B Sc-IT 3

PG003 M Sc-IT 2

2. Add three 10 records into Student table with the user interaction.

3. Add data into B_code, Title, and Author fields of Book table with the user
interaction.

Display Table Records

After inserting records into table, data could be displayed with the command
select. All the fields and records could be displayed or only selective records and
fields could be retrieved.

NOTES

Self-Instructional
Material 27

Relational Database
Management Systems

To View All the Columns

To retrieve all the columns use “*” as shown below:

The Syntax for select command:
Select * from <table name>;

The Example for select command:

To View Selective Columns

To view only selective fields enter column names separated by comma (,) as shown
below:

The Syntax to select required fields:
Select field1, field2, .from <table_names>;

Relational Database
Management Systems

NOTES

Self-Instructional
28 Material

The Example for select:

Update Table Records

You may sometimes need to update the records that you have in your table. The
Contact No. or an Address of any person has been changed or Course Fee is
changed by the university. In such cases, the Data manipulation language update
command is used.

The Syntax to Update:
Update <table name>

Set <column_name1 = <new value>,

 <column_name2=<new value,

 …

[Where <condition>];

NOTES

Self-Instructional
Material 29

Relational Database
Management Systems

The Example for Update command:

The above command will update the fee of course UG001 from 29,000
to 32,000.

Where clause is used to specify the condition for which this fee should be
changed. Without any condition all the records will be updated with the new fee
 32,000.

More than one columns could also be updated by specifying multiple columns
and there new values after set key words.

Relational Database
Management Systems

NOTES

Self-Instructional
30 Material

The Example to update multiple columns:

Try Yourself:

1. Display Name and C_code of students.

2. Change the address from Madras to Delhi of student whose Roll
number is A-08-20.

3. Change the Fee from 32000 to 38000 of course where C_code
is PG001

Delete Records

If records are no more needed you could delete records form the table. For this
purpose you may use Data Manipulation Language (DML) command, i.e., delete.
One, more than one or all the records could be deleted from the table depending
upon the ‘Where’ condition.

NOTES

Self-Instructional
Material 31

Relational Database
Management Systems

The Syntax for delete command:
Delete <table_name> [where <condition>];

Or
Delete from <table_name> where <condition>];

The Example for delete command:

The above command will delete one record from Course table where Course
Code is PG002.

To delete all the records from a table you could write the delete command
without ‘Where’ clause as given below:

Delete from course;

Or
Delete course;

Relational Database
Management Systems

NOTES

Self-Instructional
32 Material

The above command will delete all the five records from the course table.

View the Existing Tables

To view all the existing tables in database you could use Tab. Tab is a view which
displays the name and type of object, such as table, view, or synonym.

The Example to view all tables:

NOTES

Self-Instructional
Material 33

Relational Database
Management Systems

TNAME is a column which displays the object name as table, view, index,
or synonym.

TABTYPE is a column which displays the type of object. The type of
object may be any table, view, index, or synonym.

Before discussing about the ‘Where’ condition in SQL commands, it is
important to know about the operators in Oracle.

Operators in Oracle

Operators are the special characters that manipulate data items to produce some
result. These data items are called operands. Operators are classified into two
categories:

1. Unary Operators

2. Binary Operators

1. Unary Operators

A unary operator operates only one operand. A unary operator is used as shown
below:

Syntax:
Operator operand

2. Binary Operators

A binary operator operates two operands. A binary operator is used as shown
below:

Syntax:
Operand1 operator operand2

There are various types of operators to cater different purpose which includes:

 Arithmetic Operators

 Comparison Operators

 Logical Operators

 Set Operators

 Concatenation Operator

Arithmetic Operators: Arithmetic operators manipulate two operands and
produce one result. These operators are Addition, Subtraction, Division,
Multiplication and Modulus. These operators work on numeric data type for any
calculation, such as addition, subtraction, and division operators also works on
date data type.

Relational Database
Management Systems

NOTES

Self-Instructional
34 Material

The examples of arithmetic operators are as given below:

Operator Description Example Result

 / Division Select 345 / 4 from dual; 86.25

 * Multiplication Select 345 * 4 from dual; 1380

 + Addition Select 345 + 4 from dual; 349

 - Subtraction Select 345 - 4 from dual; 341

 Mod Modulus (returns
the reminder of m
divided by n)

Select 345 mod 4 from
dual;

1

Dual Table

Dual is a dummy table in Oracle that could be used to perform temporary
calculations and to check the result of any Oracle function on data which is not
stored in any table. A dual table is consisting of only one row and a column.

Comparison Operators: Comparison operators are used to compare one
expression with another. The result of a comparison could be TRUE, FALSE. It is
mainly used with WHERE clause of select, update and delete commands.

Operator Description Example

= Equal to

Select roll_no, name from student where c_code =
‘PG001’;

!= or <> Not equal to Select roll_no, name from student where c_code <>
‘UG003’;

< Less than Select c_name, duration from course where fee < 50000

> Greater than Select c_name, duration from course where fee >50000;

<= Less than or equal to Select c_name, duration from course where fee
<=45000;

>= Greater than or equal to

Select c_name, duration from course where
fee >=56000;

In / Not In Compare if a value lies
within a specified list of
values

Select * from student where name IN (‘Smith’, ‘John’);
Select * from student where name IN NOT (‘Smith’,
‘John’);

Between/
Not
Between

Compare if a value lies
within a specified range
of values

Select c_name, duration from course where fee between
45000 and 56000;

Like / Not
Like

Pattern Matching

Select * from student where name LIKE ‘d%’;

Is Null/ Is
Not Null

Compare if a value is
null

Select * from student where contact_no IS NULL;

Note: In a pattern matching operator LIKE, the underscore character (_)
represents any one character and the percent character (%) represents a group of
characters.

NOTES

Self-Instructional
Material 35

Relational Database
Management Systems

Logical Operators: Logical operators test for the truth of some condition.
Logical operators, like comparison operators, return a Boolean data type with a
value of TRUE, FALSE, or UNKNOWN.

Operator Description Example

AND Returns TRUE if both conditions
are TRUE. Returns FALSE if either
is FALSE

Select c_name, duration from course where
fee >=45000 AND fee<=56000;

OR Returns TRUE if either condition is
TRUE. Returns FALSE if both are
FALSE.

Select roll_no, name from student where
c_code = ‘PG001’ OR c_code = ‘PG002’

NOT Returns TRUE if the condition is
FALSE. Returns FALSE if it is
TRUE.

Select * from course where fee not >78000;

Set Operators: Set operators combine the results of two queries into a

single result.

 Operator Description Example

UNION Returns all distinct rows
selected by either query.

Select roll_no,b_code from issue
UNION
Select roll_no,b_code from return;

INTERSECT Returns all distinct rows
selected by both queries.

Select roll_no,b_code from issue
INTERSECT
Select roll_no,b_code from return;

MINUS Returns all distinct rows
selected by the first query but
not the second.

Select roll_no,b_code from issue
MINUS
Select roll_no,b_code from return;

Concatenation Operator: Concatenation operator is used to concatenate

two strings.

Operator Description Example

|| Concatenates character strings Select ‘Student Name' || name from
student;

Filtering Records Using Where Conditions

A university could have thousand of records but all those records are not required
to view every time. Many users might need to view different records from the
same table at different time.

To filter various records of table ‘Where’ clause could be used with
conditional, logical and other operators could be used. Following are the examples
of various operators in ‘Where’ clause of select query:

The Syntax for select command with ‘Where’ clause:
Select * from <table name> [where <condition>];

Relational Database
Management Systems

NOTES

Self-Instructional
36 Material

The following is the Course table contains 8 records. Let us filter records
from this table with different conditions.

C_CODE C_NAME DURATION FEE
PG001 MCA 3 55000
PG007 M Sc-CS 2 50000
UG001 BCA 3 32000
UG002 B Sc-IT 3 25000
PG003 M Sc-IT 2 48000
PG002 B Tech-CS 4 60000
PG004 B Tech-EC 4 64000
PG005 B Tech-IT 4 58000

Conditional Operators in SQL:

a) Equal to (=): To see the detail of course where course code equal to
PG003 then the query will be Select * from course where
C_code = ‘PG003’

Output of the above query is shown below:

b) Not Equal to (<>, ! =): To see the detail of course where course duration
is not 4 years then the query will be
Select * from course where duration <> 4;

NOTES

Self-Instructional
Material 37

Relational Database
Management Systems

Output of the above query is shown below:

c) Greater Than (>): To see the detail of course where course fee is Greater
than 50000 then the query will be

Select * from course where fee >50000;

Output of the above query is shown below:

Relational Database
Management Systems

NOTES

Self-Instructional
38 Material

As equal to, not equal to and greater than operators are used to filer records
other operators as less than, less than equal to, greater than equal to could be
used.

Other Operators in SQL:

(a) BETWEEN: The BETWEEN operator filters the records between a given
range. Suppose you want to filter the courses where fee in between 45000
to 58000. The query to retrieve such records is given below:

Select * from course where fee between 45000 and 58000

Output of the above query is shown below:

The between operators can filter the numbers, text, or date values.

(b) NOT BETWEEN: The NOT BETWEEN operator filters the records
where the data in not between a given range.

Select * from course where fee not between 45000 and 58000

NOTES

Self-Instructional
Material 39

Relational Database
Management Systems

Output of the above query is shown below:

Oracle Functions

Oracle provided various built-in functions for different purposes, such as calculation,
comparison and conversion of data. Functions may or may not have the arguments
(input) and have the capability to return a value.

Basically there are two types of function:

 Aggregate Functions

 Scalar Functions

Aggregate Functions: Aggregate functions work on a group of values (a
column values) and returns a single value.

Few aggregate functions are listed below:

 SUM()

 MAX()

 MIN()

 AVG()

 COUNT()

Scalar Functions: SQL scalar functions return a single value, based on the
input value.

Relational Database
Management Systems

NOTES

Self-Instructional
40 Material

Few scalar functions are listed below:

 MID()

 LEN()

 Upper()

 Lower()

Let suppose we have a table course with the following records:-
Select * from course;

C_CODE C_NAME DURATION FEE
PG002 MBA 2 40000
PG006 MBA 2 50000
PG007 M Sc-CS 3 32000
UG001 BCA 3 32000
UG002 B SC-IT 3 25000
PG003 M Sc-IT 3 32000
PG001 MCA 3 32000

Table - Book

(i) Sum (): To see the sum of price of the item_ID I003 SQL query is as
follows:

NOTES

Self-Instructional
Material 41

Relational Database
Management Systems

(ii) Min (): To see the order detail where item price is minimum SQL
query is as follows:

(iii) Max (): To see the order detail where item price is maximum SQL
query is as follows:

Select max (fee) from course where C_NAME= ‘MBA’;

(iv) Count (): To see the number of orders for item_ID I001 SQL
query is as follows:

Select count (item_id) from order where item_ID = ‘I001’;

Relational Database
Management Systems

NOTES

Self-Instructional
42 Material

(v) Count (*): To see the number of records in a table SQL query is as
follows:

NOTES

Self-Instructional
Material 43

Relational Database
Management Systems

Select count (c_code) from course;

(vi) Upper (): To converts the text to upper case SQL query is as
follows:

Relational Database
Management Systems

NOTES

Self-Instructional
44 Material

(vii) Lower (): To converts the text to upper case SQL query is as
follows:

(viii) Round (n): To round of any number SQL query is as follows:

NOTES

Self-Instructional
Material 45

Relational Database
Management Systems

(ix) Sqrt (n): It calculates square root value of number SQL query is
as follows:

Join Commands

To collect or see data from two or more tables Oracle provides Join command.
The Join command in SQL helps in fetching rows and columns from multiple tables
and also we can apply some condition while fetching records from multiple tables.

Oracle vs. ANSI Syntax

There are two syntaxes for join commands Oracle and ANSI. To join table in
Oracle syntax where clause is used. Where in ANSI format there is a separate
join clause which makes the query more clear and easy to read and understand.

There are mainly four types of joins that you need to understand. They are:

 CROSS JOINS

 INNER JOIN

 FULL JOIN

 LEFT JOIN

 RIGHT JOIN

(a) Cross Joins (Cartesian Product)

A cross join returns every row from the first table matched to every row in the
second. This will always return the Cartesian product of the two table’s rows i.e.,
the number of rows in the first table times the number in the second. Student and
project both store three rows. So cross joining those returns 3 * 3 = 9 rows.

Relational Database
Management Systems

NOTES

Self-Instructional
46 Material

To cross join tables using Oracle syntax, simply list the tables in the
‘from’ clause:

select *

from student, project;

Using ANSI style, type cross join between the tables you want to
combine:

select *

from student

cross join project;

(b) INNER JOINS (Join)

An inner join is used to compares values in one or more columns from each. It
only returns rows which match the join conditions in both tables. The simplest join
checks if the values in a column from one table equal the values in a column from
the other. This join is also known as Equi join.

For example:

Create following tables Student, Marks and Project:

RNO NAME COURSE FEE
101 NAMAN B.tech 59000
102 AMAN B.tech 59000
103 SITA BCA 49000
105 GITA MCA 59000

Table: Student

RNO NAME COURSE FEE
101 NAMAN B.tech 59000
102 AMAN B.tech 59000
103 SITA BCA 49000
105 GITA MCA 59000

Table: Marks

Table: Project

Oracle Format
select student.rno, name, sub1, sub2, sub3, total

from student, marks

where student.rno=marks.rno;

NOTES

Self-Instructional
Material 47

Relational Database
Management Systems

ANSI Format
select student.rno, name, sub1, sub2, sub3, total

from student

inner join marks

on student.rno= marks.rno;

(c) Outer Join:

An outer join returns all the rows from one table along with the matching rows
from the other. Rows without a matching entry in the outer table return null for the
outer table’s columns.

An outer join can either be left or right. The direction defines which side of
the join the database preserves the rows for.

There are three types of outer join:

 Left Outer Join

 Right Outer Join

 Full Outer Join

(i) Left Outer Join: The LEFT JOIN or the LEFT OUTER JOIN returns all the
records from the left table and also those records which satisfy a condition from
the right table. Also, for the records having no matching values in the right table,
the output or the result-set will contain the NULL values.

Oracle Format
select student.rno, name, sub1, sub2, sub3, total

from student,marks

where student.rno=marks.rno(+);

ANSI Format
select student.rno,name,sub1,sub2,sub3,total from student
left outer join marks on student.rno=marks.rno;

Output:

RNO NAME SUB1 SUB2 SUB3 TOTAL
101 NAMAN 50 40 40 130
103 SITA 60 40 40 140
105 GITA 50 40 50 140
102 AMAN - - - -

(ii) Right Outer Join: The RIGHT JOIN or the RIGHT OUTER

JOIN returns all the records from the right table and also those records which
satisfy a condition from the left table. Also, for the records having no matching
values in the left table, the output or the result-set will contain the NULL values.

Relational Database
Management Systems

NOTES

Self-Instructional
48 Material

Oracle Format
select student.rno, project.rno, name, pname

from student , project

where student.rno(+)=project.rno;

ANSI Format
select student.rno, project.rno, name, pname from student
right outer join project on student.rno=project.rno;

RNO RNO NAME PNAME
102 102 AMAN Railway
- 106 - AI

(iii) Full Outer Join: Sometimes you may want to join two tables to find the
matching rows. But also include any unmatched rows from both tables i.e., a
“double outer” join. This is known as a full (outer) join.

select student.rno, project.rno, name, pname

from student full outer join project on
student.rno=project.rno;

RNO RNO NAME PNAME
102 102 AMAN Railway
103 - SITA -
105 - GITA -
101 - NAMAN -
- 106 - AI

Data Control Language (DCL)

Data Control Language are the commands that allow authorized database users
to share the data with other users. The shared data could be accessed or
manipulated by other users as per the permission granted to those users.

The data manipulation language statements are GRANT and REVOKE

 GRANT- Gives user’s access privileges to database.

 REVOKE- Withdraw user’s access privileges given by using the
GRANT command.

TCL: EXPERIMENTS USING TCL SQL STATEMENTS

Transaction Control Language (TCL)

Various transactions are being done by different users these transactions then could
be saved permanently or could be can called by the user. TCL commands manage
changes made by DML statements. The transaction control statements are
COMMIT, SAVEPOINT and ROLLBACK.

NOTES

Self-Instructional
Material 49

Relational Database
Management Systems

Examples of TCL Commands:

 COMMIT– Commits a Transaction.

 ROLLBACK– Rollbacks a transaction in case of any error occurs.

 SAVEPOINT– Sets a save-point within a transaction.

 SET TRANSACTION– Specify characteristics for the transaction.

Oracle Transactions:

All the changes that you make through DML command are known as transaction.
A transaction is a logical group of work. Transactions that you do on a database
temporarily stores data on the client machine that is either it could be made
permanent or could be cancelled by the user.

Oracle provides few commands to control the transactions as given below:

 Commit

 Save-Point

 Rollback

Commit: The commit command is used to make the transaction permanent
to the database the commit command ends the current transactions.

SQL > Commit to work;

The keyword work is optional which is used to increased readability only,
you could also write

SQL > Commit;

Rollback: The rollback command is used to terminate the current transaction
all the change made to the rollback database can be undone by rollback. It is
generally used when a session disconnects from the database without completing
the current transaction.

Example:
SQL > Rollback work;

The keyword work is optional which is used to increased readability only,
you could also write

SQL > rollback;

When commit command is executed Oracle prompts a message as shown
below:

Rollback complete.

* Rollback undone the whole transaction made after the last committed
transaction.

Relational Database
Management Systems

NOTES

Self-Instructional
50 Material

BLOCK 3: INDEX AND VIEW

This block will discuss about the following topics:

 Index : Experiment Using Database Index Creation, Renaming an
Index, Copying Another Index, Dropping an Index

 Views: Create Views, Partition and Locks

Index and View:

(a) Index: An index is a performance-tuning method of allowing faster retrieval
of records. An index creates an entry for each value that appears in the
indexed columns. By default, Oracle creates B-tree indexes.

(i) Creating an Index

The syntax for creating an index in Oracle/PL/SQL is:
CREATE [UNIQUE] INDEX index_name

 ON table_name (column1, column2, column_n)

 [COMPUTE STATISTICS];

In above syntax, UNIQUE refers that the combination of values in the
indexed columns must be unique, index_name is the name of index, table_name
is the name of table on which we are creating the index, column1, column2, ...
column_n refers to the columns to use in the index and COMPUTE
STATISTICS tells Oracle to collect statistics during the creation of the index.
The statistics are then used by the optimizer to choose a “Plan of Execution” when
SQL statements are executed.

Example: Let us look at an example of how to create an index in Oracle/PL/
SQL. For example:

CREATE INDEX employee_idx

ON employee (name);

In this example, we have created an index on the employee table called
employee_idx. We could also create an index with more than one field as in the
example below:

NOTES

Self-Instructional
Material 51

Relational Database
Management Systems

We could also choose to collect statistics upon creation of the index as
follows:

Relational Database
Management Systems

NOTES

Self-Instructional
52 Material

(ii) Rename an Index

The syntax for renaming an index in Oracle/PL/SQL is:

ALTER INDEX index_name

 RENAME TO new_index_name;

Here, index_name is the name of the index that you wish to rename
and new_index_name is the new name to assign to the index.

Example:

Let us look at an example of how to rename an index in Oracle/PL/SQL.
For example:

(iii) Drop an Index

The syntax for dropping an index in Oracle/PL/SQL is:

DROP INDEX index_name;

Where index_name is the name of the index to drop.

NOTES

Self-Instructional
Material 53

Relational Database
Management Systems

Example:

Let us look at an example of how to drop an index in Oracle/PL/SQL. For example:

View

A view is a virtual table, which consists of a set of columns from one or more
tables. It is similar to a table but it does not store in the database. View is a query
stored as an object. In SQL, a view is a virtual table based on the result-set of an
SQL statement. A “View Table” or just “View” makes the Select a long-lived
virtual table: no data storage in its own right, just window on data it selects from.

A view contains rows and columns, just like a real table. The fields in a view
are fields from one or more real tables in the database. You can add SQL functions,
WHERE, and JOIN statements to a view and present the data as if the data were
coming from one single table.

Syntax:
CREATE VIEW view_name AS SELECT set of fields FROM
relation_name WHERE (Condition)

Relational Database
Management Systems

NOTES

Self-Instructional
54 Material

CREATE VIEW student_view AS SELECT ROLL_NO, NAME, mobile
from student;

Display Records from View:
select * from student_view;

NOTES

Self-Instructional
Material 55

Relational Database
Management Systems

DROP VIEW: This query is used to delete a view, which has been already
created.

Syntax: DROP VIEW View_name;
Drop view student_view;

A view can a simple view or a complex view.

Differences between Simple VIEW and Complex VIEW:

Simple VIEW Complex VIEW

It contains only one table. It contains one or more number of tables

It does not contain aggregate function like Sum (),
Max () or any other aggregate function.

It can contain aggregate function.

Insert and update commands can be performed
through a Simple view.

Insert and update commands cannot be performed
through a Simple view.

INSERT, DELETE and UPDATE are directly
possible on simple view.

We cannot apply INSERT, DELETE and UPDATE
on complex view directly.

It does not include NOT NULL columns from base
table.

NOT NULL columns that are not selected by
simple view can be included in complex view.

Relational Database
Management Systems

NOTES

Self-Instructional
56 Material

Complex View
Select * from student1

RNO NAME COURSE FEE
101 NAMAN B.tech 59000
102 AMAN B.tech 59000
103 SITA BCA 49000
105 GITA MCA 59000

Select * from marks1

RNO SUB1 SUB2 SUB3 TOTAL
101 50 40 40 130
103 60 40 40 140
105 50 40 50 140

Example-1

Create view students_marks1 as

Select student1.rno, name, sub1, sub2, sub3, total from
student1, marks1

Where student1.rno=marks1.rno;

Display Records from View:
Select * from students_marks1;

RNO NAME SUB1 SUB2 SUB3 TOTAL
101 NAMAN 50 40 40 130
103 SITA 60 40 40 140
105 GITA 50 40 50 140

Example-2

Create view students_marks2 as
Select student1.rno, name, sub1, sub2, sub3, total from
student1 left outer join marks1 on
student1.rno=marks1.rno;

Display Records from View:
Select * from students_marks2;

RNO NAME SUB1 SUB2 SUB3 TOTAL
101 NAMAN 50 40 40 130
103 SITA 60 40 40 140
105 GITA 50 40 50 140
102 AMAN - - - -

NOTES

Self-Instructional
Material 57

Relational Database
Management Systems

Example-3

Create view students_view as
Select student1.rno, project.rno, name, pname from student1
right outer join project on student1.rno=project.rno;

Display Records from View:
Select * from students_view;

ORDER BY Clause (Sorting Records)

The ORDER BY clause is used to arrange data in ascending or descending
order. One or more fields can be used to arrange records.

Example-4
Select Rno, name

From student

ORDER BY name;

The above command will arrange name in ascending order. Asc and Desc
can be used along with order by clause to arrange records n ascending order,
which is default or Desc to arrange records in descending order.

Select Rno, name, Fee

From student

ORDER BY name Asc, fee Desc

BLOCK 4: EXCEPTION HANDLING AND PL/SQL

This block will cover the following topics:

 Exception Handling: PL/SQL Procedure for Application Using Exception
Handling

 Cursor: PL/SQL Procedure for Application Using Cursors

 Trigger: PL/SQL Procedure for Application Using Triggers

 Package: PL/SQL Procedure for Application Using Package

 Reports: DBMS Programs to Prepare Report Using Functions

PL/ SQL

Introduction:

PL/ SQL is also known as an embedded SQL and is a superset of SQL. PL/ SQL
is an acronym of Procedural Language/Structure Query Language. It supports
procedural features and SQL commands.

Relational Database
Management Systems

NOTES

Self-Instructional
58 Material

Structure of PL/ SQL Program:

PL/ SQL program block is divided in three sections, such as

1. Declaration Section

2. Execution Section

3. Exception Handling Section

[DECLARE

--Declarations]

BEGIN

--Statements

[EXCEPTION

--Exception Handler]

END;

Description of the Blocks

(a) Declaration Section: In Declaration section variables, constants, user
defined exceptions, cursor and other objects are declared. This is an optional
section. This section begins with the key word DECLARE.

(b) Execution Section: All the executable statements, such as SQL statements,
control statements, loops are written under this section. This is a mandatory
section. This section begins with the key word BEGIN and ends with the
key word END.

(c) The Exception Handling Section: During program execution many
abnormal situations may occur. To handle those situations statements are
written in this block. These situations are known as errors which occur due
to the logical error, syntax error or system error. This is an optional section.

The PL/ SQL Syntax is as follows:
DECLARE

Declaration_Statements

…

BEGIN

NOTES

Self-Instructional
Material 59

Relational Database
Management Systems

Executable_Statements

…

EXCEPTION

Exception_Handling_Statements

…

END ;

..

The PL/ SQL Engine:

Oracle uses a PL/ SQL engine to processes the PL/ SQL statements. Either the
PL/ SQL program is stored on the client side or on the server side PL/ SQL
engine is used by Oracle to execute the program statements.

Data Types in PL/ SQL:

A program has many inputs and outputs in the form of variable and constant.
These variable and constant specifies the storage format, type of value and a
range of the values that could be stored. PL/ SQL provides a various data types
which are system defined and also gives the flexibility to the programmer to create
their own data types which fit to the business needs. Classification of data types:

 Scalar Data Types

 Composite Data Types

Relational Database
Management Systems

NOTES

Self-Instructional
60 Material

Comments in PL/ SQL:

In Oracle, comments may be introduced either for single line or for multiple lines.

Types of Comments:

1. /*...*/ is used for multiple line comments.

2. — is used for single line comments.

The Example for single line comment is given below:
— This is a PL/ SQL program to calculate employee

salary

Declare

…

Variables in PL/ SQL:

Variables are the identifiers of data type. These variables could be the identifiers
of either system defined (Scalar) data types or the identifiers of user defined
(Composite) data type i.e., record, table or Varray.

Variable declaration can be of any data type:

Example:
Name char (30);

Salary Number (8, 2);

Date_of_join Date;

Constants can be of any data type:

Example:
Pi constant number (3, 2) : = 3.5;

Status Booleans: = TRUE;

Pi and Status are assigned valued during declaration makes them constant.

Example of PL/ SQL Program:

Step-1: Write PL/SQL Program in SQL Commands as shown below:

NOTES

Self-Instructional
Material 61

Relational Database
Management Systems

Example: Write a PL/SQL program to display ‘First PL/SQL Program’.
DECLARE

 BEGIN

 DBMS_OUTPUT.PUT_LINE (‘First PL/SQL Program’);

END;

Click on Run button to run program.

Output:

Example: Write a PL/SQL program to display sum of two numbers given at run
time.

Relational Database
Management Systems

NOTES

Self-Instructional
62 Material

After running this program it will show input screen as shown below:

Enter values in text boxes and click on Submit button.

Output:

Example: Write a PL/SQL Program to print Prime Number.

NOTES

Self-Instructional
Material 63

Relational Database
Management Systems

Input:

Output:

s

Example: Write a PL/SQL Program to Find Factorial of a Number given number.

Relational Database
Management Systems

NOTES

Self-Instructional
64 Material

Input:

Output:

Description of above program is given below:

In Declaration Section three variables are declared named number_1, number_2
and res of number data type.

In Executable Section value in number_1 and number_2 variables are
taken by the user interactively. Here & symbol prompts the user to enter the value
and:= (assignment operator) is used to assign value to variables.

Value for res variable is calculated to produce the sum of number_1 and
number_2.

DBMS_OUTPUT.PUT_LINE is used to display output of a program.

Compile Procedure:

To execute any stored procedure, it is necessary to compile it. To compile a
procedure the following command is used:

Syntax: SQL> @ procedure_name ;

NOTES

Self-Instructional
Material 65

Relational Database
Management Systems

Example: SQL> @ search_book ;

If the procedure does not contain any error then the system would prompt
a message as follows: Procedure created.

Try Yourself:

1. Write PL/SQL program to display demonstrate all sections of
PL/SQL program.

2. Write PL/SQL program to display HELLO.

Exception Handling:

In PL/ SQL error is called exception. Error may occur due to various reasons,
such as coding mistakes, hardware failure, system resources problems and many
other reasons. Due to these errors program terminates abnormally.

Type of Exception:

1. I nter nal Exception

2. User-Defined Exceptions

The following is the list of internal exceptions:

Exception Explanation
ZERO_DIVIDE This exception raised when PL/SQL program attempts to divide

a number by zero.
NO_DATA_FOUND This exception raised when SELECT INTO statement returns no

rows while expected to return.
CURSOR_ALREADY_OPEN This exception raised when you try to open a cursor which is

already.
INVALID_NUMBER This exception raised when, the conversion of a string into a

number fails because the string does not represent a valid
number.

LOGIN_DENIED This exception raised when PL/SQL program attempts to log on
to Oracle with an invalid username and/or password.

NOT_LOGGED_ON This exception raised when PL/SQL program issues a database
call without being connected to Oracle.

STORAGE_ERROR This exception raised when PL/SQL runs out of memory.
TOO_MANY_ROWS A SELECT INTO statement returns more than one row while

expected only one.
VALUE_ERROR This exception raised when data type or data size is invalid.
PROGRAM_ERROR This exception raised when PL/SQL has an internal problem.
OTHERS This exception raised when error is unknown or not explicitly

defined.

Exception handling program is based on book table as shown below:

B_CODE TITLE AUTHOR PRICE STATUS
B004 DBMS Korth 440 T
B006 DCN forouzan 500 T
B001 DBMS NAVATHE 400 T
B003 programming in c Kavita 340 T

Relational Database
Management Systems

NOTES

Self-Instructional
66 Material

Example: Write a program to demonstrate exception handling.

Query returns more than one records then TOO_MANY_ROWS exception:

In the above program select query is used to select book title into variable
B_title. Two internal exceptions are handled named NO_DATA_FOUND and
TOO_MANY_ROWS. If query returns more than one records then
TOO_MANY_ROWS exception would be raised by the system, if no record
matches then NO_DATA_FOUND exception would be raised.

Example:
Write a program to demonstrate User-named Exception
handlers.

You could assign a name to unnamed system exceptions using a Pragma
called Exception_Init as shown below:

Pragma Exception_Init (Exception Name, Oracle Error
Number);

In the above example, exception name is the user defined name of the
exception that will be associated with Oracle error number.

Syntax:
DECLARE

 Exception_Name EXCEPTION ;

 PRAGMA EXCEPTION_INIT (Exception_Name , Err_Code
) ;

NOTES

Self-Instructional
Material 67

Relational Database
Management Systems

BEGIN

Executable Statement;

. . .

EXCEPTION

 WHEN exception_name THEN

 Handle the Exception

END;

Example: Let us consider the student table and course tables.

The c_code is a primary key in course table and c_code is a foreign key in
student table.

If you try to delete a c_code from course table and it has a corresponding
child records in student table an exception will be thrown with oracle code number
-2292. You could assign a user defined name to this exception that could be handled
in the exception block as given below:

Example:

As user could assign name to the Oracle exceptions in the above example
child_record_exception is a user defined name of exception.

RAISE_APPLICATION_ERROR ()

A user could assign an error message by using
Raise_application_error () to make the error message more
descriptive for the end-user. Raise_application_error () is a build-in procedure.

Relational Database
Management Systems

NOTES

Self-Instructional
68 Material

Example: Write a PL/SQL program to demonstrate User-defined
Exceptions.

Other than the pre-defined exceptions you could define your own exception
to validate data against business requirements. For example, if user wants to update
total marks of student but subject marks are NULL an error must be raised the
system to alert the user.

A user defined exceptions must be declared within declaration section by
the keyword EXCEPTION and must be raised explicitly by RAISE statement
within the executable section.

Create Table Marks:

Create table marks (roll_no number(3), sub1 number(3),
sub2 number(3), sub3 number(3), total number(3))

Insert values in roll_no, sub1, sub2, sub3 fields only:
Insert into marks (roll_no, sub1, sub2, sub3) values (101, 34, 54, 43)

Insert into marks (roll_no, sub1, sub2, sub3) values (102, 54, 54, 50)

Insert into marks (roll_no, sub1, sub2, sub3) values (104, 65, 44, 40)

Select * from marks;

ROLL_NO SUB1 SUB2 SUB3 TOTAL
101 34 54 43 -
102 54 54 50 -
104 65 44 40 -

Example:

NOTES

Self-Instructional
Material 69

Relational Database
Management Systems

In the above example null_marks is a user defined exception which must
be raised explicitly using RAISE statement. This exception would be raised when
marks in any subject would be NULL.

After executing above program check students marks:
Select *from marks;

ROLL_NO SUB1 SUB2 SUB3 TOTAL
101 34 54 43 -
102 54 54 50 158
104 65 44 40 -

Try Yourself

 Write a PL/SQL code block that will accept an account number from the
user and debit an amount of 2000 from the account if the account has
a minimum balance of 500 after the amount is debited. The Process is
too fired on the Accounts table.

 Write a PL/SQL code block to calculate the area of the circle for a value
of radius varying from 3 to 7. Store the radius and the corresponding
values of calculated area in a table Areas. (Usage While loop)

Areas – radius, area.

 Write a PL/SQL block of code for inverting a number 5639 or 9365.
(Usage For loop)

 Usage of for and goto Statement: Write a PL/SQL block of code
to achieve the following: if the price of Product ‘p00001’ is less than
4000, then change the price to 4000. The Price change s to be recorded
in the old_price_table along with Product_no and the date on which the
price was last changed. Tables involved: product_master- product_no,
sell_price.

Old_price_table- product_no,date_change, Old_price

Cursor

Oracle allocates a memory known as the context area for the processing of the
SQL statements. A cursor is a pointer or handle to the context area. Through the
cursor, a PL/SQL program can control the context area and what happens to it as
the statement is processed.

The three types of the cursors are:

 Static Cursors

 Dynamic Cursors

 REF Cursors

Relational Database
Management Systems

NOTES

Self-Instructional
70 Material

Static cursors are the ones whose select statements are known at the compile
time. These are further classified into

 Explicit Cursors

 Implicit Cursors

Use marks table to practice cursor:
Select * from marks;

ROLL_NO SUB1 SUB2 SUB3 TOTAL
101 34 54 43 131
102 54 54 50 158
104 65 44 40 149

 Cursors:

Q. Create a cursor to show roll number and total marks of students from
marks table using cursor.

Trigger:

A trigger is a PL/ SQL code block that triggered (runs) automatically an event. An
event in PL/ SQL is the Data Definition Language such as INSERT, UPDATE or
DELETE done on a table.

Use of a Trigger

A database trigger helps in maintaining the organization’s database in such a manner
that without executing the PL/ SQL code explicitly it update and validate the data.

NOTES

Self-Instructional
Material 71

Relational Database
Management Systems

Triggers have the capabilities to provide a customized management system of your
database.

Database trigger can be used to cater the following purposes:

 To enforce integrity constraints (for example, check the referenced data
to maintain referential integrity) across the clients in a distributed database

 To prevent generate invalid transactions in database.

 To update data automatically to one or more tables or views without
user interaction

 Automatically generate derived column values

 To customize complex security authorizations.

 To permit insert, update or delete operations to an associated table only
during predetermined a date and time.

 Provide auditing

 Provide transparent event logging

 Helps in prompting information about various events taken on database,
events of users, and SQL statements to subscribe applications.

 Helps in maintaining replication of synchronous table

 Helps in gathering statistics on various table accesses.

Structure of PL/SQL Trigger

Like a PL/SQL code block procedure and function also divided into different
sections.

The Syntax for creating a trigger
CREATE [OR REPLACE]

TRIGGER <trigger_name>

BEFORE (or AFTER)

INSERT OR UPDATE [OF COLUMNS] OR DELETE

ON table_name

[FOR EACH ROW [WHEN (condition)]]

DECLARE
Declaration Statements
…
BEGIN
Executable Statements
...
EXCEPTION
Exception Handling Statement
…
END;

A database trigger could also have declarative and exception handling parts.

Relational Database
Management Systems

NOTES

Self-Instructional
72 Material

How to Apply Trigger:

A database trigger has three sections namely a trigger statement, a trigger body
and a trigger restriction. Three of Parts of Trigger:

1. A Trigger Statement

2. A Trigger Body Action

3. A Trigger Restriction

The above mentioned parts are described below:

Create a Trigger

A company XYZ has the employee detail in employee table. Company wants to
have the history of all the employees how have left the organization. To store the
employee history a new table emp_history is create with the same structure as
employee table.

The structure of employee table is shown below:

Column Name Data Type Size

EMP_CODE NUMBER 10

E_NAME Varchar2 15

DESIGNATION Varchar2 35

SALARY NUMBER 10,2

DEPTNO NUMBER 2

The employee table contains the following records:

EMP_CODE E_NAME DESIGNATION SALARY DEPTNO
7369 SMITH CLERK 15000 20
 7499 ALLEN SALESMAN 35000 30
 7521 WARD SALESMAN 32000 30
 7566 JONES MANAGER 55000 20
 7654 MARTIN SALESMAN 30000 30
 7698 BLAKE MANAGER 60000 30
 7782 CLARK MANAGER 64000 10
 7788 SCOTT ANALYST 58000 20
 7839 KING PRESIDENT 70040 10
 7844 TURNER SALESMAN 30430 30
 7876 ADAMS CLERK 23000 20

Table- Employee

Create a Duplicate Table:

To maintain the employee history a table emp_history could be created with the
SQL command as written below:

SQL> Create table emp_history as select * from employee
where emp_code is null;

The above command would create a new table emp_history which would
contaion all the fields of employee table (as * represents all the fields of a table).

NOTES

Self-Instructional
Material 73

Relational Database
Management Systems

The where condition “emp_code is null” is used to create the duplicate table empty.

* Without where clause duplicate table would contain all the records of
employee table.

After writing the above command system would prompt a message Table
created.

You could see the structure of new table emp_history by giving command
as written below:

SQL> Desc emp_history;

Column Name Data Type Size

EMP_CODE NUMBER 10

E_NAME Varchar2 15

DESIGNATION Varchar2 35

SALARY NUMBER 10,2

DEPTNO NUMBER 2

Table- Emp_History

When any employee leaves the organization his or her detail would be deleted
from the employee table and the same record should be inserted into emp_history
table. A trigger could be associated on table employee on the event delete. The
code for trigger is given below:

Example-1: Before Delete Trigger:

Relational Database
Management Systems

NOTES

Self-Instructional
74 Material

In the above example, emp_history is a trigger which is associated with
the employee table. This is a trigger would fire on delete command on employee
table and would store the deleted record in emp_history table.

Now to test it:

To test whether the trigger is fired and insert the deleted record in emp_history
table delete few records from employee table as shown below:

SQL> delete from employee where emp_code = 7782;

SQL> delete from employee where emp_code = 7876;

SQL> delete from employee where emp_code = 7844;

The above command would delete a record from employee table where
emo_code is 7782. Now check whether this record has been inserted in to
emp_history table or not write the following command on SQL prompt:

Select *from emp_history;

The above command would prompt the record as shown below:

EMP_CODE E_NAME DESIGNATIO
N

SALARY DEPTNO

 7782 CLARK MANAGER 64000 10

 7876 ADAMS CLERK 23000 20

 7844 TURNER SALESMAN 30430 30

Table- Emp_History

Example-2: Before Insert Trigger

In the below example, a trigger is associated with the employee table. This trigger
would fire before inserting a new record in the table.

NOTES

Self-Instructional
Material 75

Relational Database
Management Systems

In the above example, insert_emp is a trigger which is associated with the
employee table. This is a trigger would fire on insert command on employee table
and would prompt new employee code and employee name before inserting it in
to employee table.

Now to test it:

To test whether the trigger is fired and display message on screen, insert new
record in to employee table as shown below:

SQL> Insert into employee (emp_code, e_name) values
(321,’Scott’);

When new record is inserted in to employee table system prompts the
message as shown below:

New employee Code inserted is: 321

New employee Name inserted is: Scott

The trigger would execute even if you insert data in all the fields of employee
table.

IF Statement in Trigger

As to control the PL/ SQL code execution if statement is used, a database trigger
also use if statement. If statements in database triggers is used to determine what
statement caused the execution of the trigger, such as inserting, updating or deleting
a data from the associated table.

 The general form of if statements in trigger are:

 If Inserting Then

 If Deleting Then

 If Updating Then

An Example of is statement in trigger is given below:

Relational Database
Management Systems

NOTES

Self-Instructional
76 Material

In the above example, emp_trigger is a database trigger which is associated
with the employee table. This is a trigger has three if conditions where if conditions
are used to determine what statement is invoked, and what prompts an appropriate
message in various cases.

Different Conditions of Trigger Execution

1. Insert record in to employee table:

Syntax: SQL> insert into employee (emp_code, e_name,
designation) values (1001,’xyz’, ‘manager’);

When inserting a record in to employee table the first condition is true and
the system would prompt a message as shown below:

Inserting Employee xyz

New employee Number inserted is: 1001

New employee Name inserted is: xyz

1 row created.

Deleting Employee KING

2. Delete record from employee table:

Syntax: SQL> delete from employee where
emp_code=7839;

When deleting a record from employee table, the second condition is true
and the system would prompt a message as shown below:

Deleting Employee KING

1 row deleted.

3. Update record from employee table:

Syntax: SQL> update employee set e_name= ‘Spark’
where emp_code=7934;

When updating a record from employee table, the third condition is true
and the system would prompt a message as shown below:

Updating Employee MILLER to Spark

1 row updated.

Viewing Triggers

To view all the triggers created by the user, a data dictionary named
USER_TRIGGERS could be used. To see all the triggers, use select statement
on USER_TRIGGERS as shown below:

Select trigger_name from user_triggers;

NOTES

Self-Instructional
Material 77

Relational Database
Management Systems

For more description, you could also write the following command:
SQL> Select * from user_triggers;

Deleting a Trigger

If trigger is more required, you can get side of it by using a Data Definition Language
command Drop.

Syntax:
SQL > Drop trigger < trigger name >

Example:

Relational Database
Management Systems

NOTES

Self-Instructional
78 Material

PL/ SQL Package:

A package is a database object. It is a collection of various database objects as
procedures, functions, cursors, variables and constants.

There are two types of packages:

1. Built-in Packages

2. User-Defined Packages

Built-in Packages: Built-in packages, such as DBMS_OUTPUT,
DBMS_SQL, DBMS_DDL, DBMS_TRANSACTION, etc., caters pre-defined
functionality.

User-Defined Packages: User defined package serve the user as per the
changed business needs. A package consists of two parts:

 Package Specification

 Package Body

(a) Package Specification: In package specification one could declare variables,
constants, exceptions, cursors, sub-procedures and other database objects as
mentioned earlier. To package specification could be created using the CREATE
PACKAGE statement. The Syntax to create package specification is as follows:

CREATE [or Replace] Package < package_name > IS <
declarations >

Begin

(Executable statements)

END <package_name > ;

The sub-procedures declared in package specification must be declared in
package body.

(b) Package Body: The actual implementation of declared sub-procedures and
cursors is done in package body . The sub-procedures declared in package
specification must be declared in package body. The Syntax for the CREATE
BODY statement is as follows :

CREATE [or Replace] package < package_name > IS <
declarations >

Procedure < procedure_name > (variable data type);

Function < function_name > (variable data type) return
data type ;

END < body_name> ;

NOTES

Self-Instructional
Material 79

Relational Database
Management Systems

A Package Function: The example given below declares a function
getGrade which would accept an argument of varchar data type and would return
a value of varchar data type.

Example:

Step-1

The above code would create a package with the name pkg_marksheet.
This package contains a function named getGrade. This function will accept an
argument of varchar type and will return a value of varchar type.

Package created.

Step-2: The function pkg_marksheet is declared in package body as shown below:
create or replace package body pkg_marksheet as

function getgrade (rno varchar) return varchar IS

s1 number (3) ;

s2 number (3) ;

s3 number (3) ;

s4 number (3) ;

total number (3) ;

per number (3) ;

begin

select sub1, sub2, sub3, sub4 into s1, s2, s3 , s4
from marks where roll_no = rno ;

total := s1 + s2 + s3 + s4 ;

per := total / 4 ;

Relational Database
Management Systems

NOTES

Self-Instructional
80 Material

if per >= 90 then

return ‘A+’ ;

elsif per >= 80 then

return ‘A’ ;

elsif per >= 70 then

return ‘A-’ ;

elsif per >= 60 then

return ‘B+’ ;

elsif per >= 50 then

return ‘B’ ;

elsif per >= 40 then

return ‘B-’ ;

elsif per >= 30 then

return ‘C’ ;

else

return ‘F’ ;

end if ;

end getgrade ;

end pkg_marksheet ;

/

The output of the above PL/ SQL code when compiled is given below:
Package body created.

Calling Package Function: To call the function declared in package
specification the reference of package name need to give as given below. The
Syntax to call a package function is as follows :

NOTES

Self-Instructional
Material 81

Relational Database
Management Systems

The Example to call a package function is as follows:
pkg_marksheet.getGrade (‘A-08-12’);

Where pkg_marksheet is a package name in which a function getGrade is
declared which takes a varchar argument A-08-12.

A Package Procedure: The example given below declares a procedure
show_book_price which would accept an argument of varchar data type.

Example :

Step-1

The above code would create a package with the name book_price. This
package contains a procedure named show_book_price. This procedure will
accept an argument of varchar type.

* Procedure cannot return any value.

The output of the above PL/ SQL code when compiled is given below :

Relational Database
Management Systems

NOTES

Self-Instructional
82 Material

Package created.

Step-2

Save the above program with the any name (let us suppose show_price)
and then run it by using :

The output of the above PL/ SQL code when compiled is given below :

Package body created.

Calling Package Procedure: To call the procedure declared in package
specification the reference of package name need to give as given below :

The Syntax to call a package procedure is as follows:
Package_name.procedure_name;

The Example to call a package procedure is as follows:
book_price. show_book_price (‘B003’);

Where book_price is a package name in which a procedure
show_book_price is declared which takes a varchar argument B003.

Reports Using Functions:

A stored function always returns a result and can be called inside an SQL statement
just like ordinary SQL function. A function parameter is the equivalent of the IN
procedure parameter, as functionals use the RETURN keyword to determine

NOTES

Self-Instructional
Material 83

Relational Database
Management Systems

what is passed back. User-defined functions or stored functions are the stored
procedures which have the features of all procedures. They can accept parameters,
perform calculations based on data retrieved and return the result to the calling
SQL statement, procedure, and function or PL/SQL program. A function returns
a value.

Create a Function

The syntax to create a function is as follows:
CREATE OR REPLACE FUNCTION function_name (function_params
)

 RETURN return_type IS

Declaration statements

 BEGIN

 Executable statements

RETURN something_of_return_type ;

EXCEPTION

Exception section

 END;

Description of the Syntax

CREATE Function: This is used to create a function, if no other function with the
given name exists.

OR REPLACE Function: OR REPLACE is used to re-create the function
if the given function name already exists. If no function exists with the given name,
it creates the new function. You can also use OR REPLACE clause to change the
definition of an existing function without dropping, re-creating and regranting
privileges previously granted on the function to other users. If you redefine a function,
then Oracle Database recompiles it.

IS: It is similar to DECLARE in PL/SQL Blocks. Variables could be declared
between IS and BEGIN.

RETURN: Clause Function returns a value. The RETURN clause is used
to specify the data type of the return value of the function. Since every function
must return a value, this clause is mandatory to use. The return value can have any
data type supported by PL/SQL.

Example: Functions can be very useful in many situations. For example,
functions can be useful when you need to calculate the total monthly sale in different
areas and of different items. Or you want to calculate the expenses of an
organization. In such instances functions are useful. Consider Table, which contains
the detailed of accounts of account holders of bank.

Relational Database
Management Systems

NOTES

Self-Instructional
84 Material

Table: Account_Holder

A stored function is given to return the balance of an account holder. The
account number is passed as a parameter in this function.

Function: get_balance ()
 /* This is a stored function which returns the total
balance of all saving accounts*/

CREATE or replace FUNCTION get_balance (no IN NUMBER)

 RETURN NUMBER

 IS acc_bal NUMBER (11 , 2) ;

BEGIN

 SELECT sum (ac_balance) INTO acc_bal from account_holder
WHERE acc_no = no ;

RETURN (acc_bal) ;

END;

/

The given function, get_balance () has a parameter of number type to accept
the account holder’s account number. The acc_bal is a variable in which the balance
of the given account holder is stored and returned to the caller program.

Save File: Save the above file with the name account_balance.SQL

Compile Function: To execute any stored procedure it is necessary to
compile it. To compile a procedure the following command is used:

The syntax is as follows:
SQL> @ function_name ;

For example,
SQL> @ account_balance ;

NOTES

Self-Instructional
Material 85

Relational Database
Management SystemsBLOCK 5: APPLICATION DEVELOPMENT

This block will deal with Design and Development of various Applications including,
Library information system, Students mark sheet processing, Telephone directory
maintenance, Gas booking and delivering, Electricity bill processing, Bank
Transaction, Pay roll processing. Personal information system, Question database
and conducting Quiz and Personal diary.

Library Information System:

Tables

Book_Details

Binding_Details

Category_Details

Borrower_Details

Student_Details

Staff_Details

Student_Details

Shelf_Details

Library Management System (SQL Commands)

Creating Table “Book_Details”:
CREATE TABLE Book_Details

(

 ISBN_Codeint PRIMARY KEY,

 Book_Titlevarchar(100),

 Language varchar(10),

 Binding_Idint,

 No_Copies_Actualint,

 No_Copies_Currentint,

 Category_idint,

 Publication_yearint

)

Inserting Some Data in “Book_Details”:

1. INSERT INTO Book_details

2. VALUES(‘0006’,’Programming Concept’,’English’,2,20,15,2,2006);

Creating Table “Binding_Details”:

1. CREATE TABLE Binding_details

2. (

3. Binding_idint PRIMARY KEY,

Relational Database
Management Systems

NOTES

Self-Instructional
86 Material

4. Binding_Namevarchar(50)

5.)

Describe Binding Table:

Describe binding_details

Inserting Some Data in Binding Table:

1. I N S E R T I N T O B i n d i n g _ D e t a i l s V A L U E S
(1,’McGraw Hill);

2. I N S E R T I N T O B i n d i n g _ D e t a i l s V A L U E S
(2,’BPB Publication’);

All Data of Binding Table:

1. select *from binding_Details

Creating Relationship between Book and Binding Table:

1. ALTER TABLE Book_details

2. ADD CONSTRAINT Binding_ID_FK FOREIGN KEY
(Binding_Id)REFERENCESBinding_Details
(Binding_Id);

Checking Relationship:

1. selectb.Book_Title, e.binding_name

2. fromBook_Detailsb, Binding_Details e

3. whereb.binding_id = e.binding_id;

Creating Category Table:

1. CREATE TABLE Category_Details

2. (

3. Category_Idint PRIMARY KEY,

4. Category_Namevarchar(50)

5.)

NOTES

Self-Instructional
Material 87

Relational Database
Management Systems

Inserting Some Data in Category Table:

1. I N S E R T I N T O C A T E G O R Y _ D E T A I L S V A L U E S
(1,’Database’);

2. I N S E R T I N T O C A T E G O R Y _ D E T A I L S V A L U E S
(2,’Programming Language’);

Building Relationship between Book & Category Table:

1. ALTER TABLE Book_details

2. ADD CONSTRAINT Category_Id_FK FOREIGN KEY
(Category_ Id) REFERENCES Category_Details
(Category_Id);

Checking Relationship:

1. selectb.Book_Title,e.Category_Name

2. fromBook_Detailsb,Category_Details e

3. whereb.binding_id = e.Category_id;

Creating Borrower Table:

1. CREATE TABLE Borrower_Details

2. (

3. Borrower_Idint PRIMARY KEY,

4. Book_Idint,

5. Borrowed_From date,

6. Borrowed_TO date,

7. Actual_Return_Date date,

8. Issued_byint

9.)

Inserting Some Data in Category Table:

1. I n s e r t i n t o B O R R O W E R _ D E T A I L S V A L U E S
(1,0004,’01-Aug-2014',’7-Aug-2014',’7-Aug
2014',1)

2. Insert into BORROWER_DETAILS VALUES(2,6,’02-
Aug-2014',’8-Aug-2014',NULL,1)

Building Relation between Book & Borrower Table:

1. ALTER TABLE Borrower_details ADD CONSTRAINT
Book_Id_FK FOREIGN KEY(Book_Id) REFERENCES
Book_Details(ISBN_Code);

Relational Database
Management Systems

NOTES

Self-Instructional
88 Material

Checking Relationship:

1. s e l e c t B o r r o w e r _ D e t a i l s . B o r r o w e r _ i d ,
Book_Details.Book_title

2. fromBorrower_Details,Book_Details

3. w h e r e B o r r o w e r _ D e t a i l s . b o o k _ i d =
Book_Details.ISBN_Code

1. ALTER TABLE Borrower_Details

2. ADD CONSTRAINT Issued_by_FK FOREIGN KEY
(Issued_by) REFERENCES Staff_Details(Staff_Id);

Creating Staff Table:

1. CREATE TABLE Staff_Details

2. (

3. Staff_Idint PRIMARY KEY,

4. Staff_Namevarchar(50),

5. Password varchar(16),

6. Is_Adminbinary_float,

7. Designation varchar(20)

8.)

Inserting Some Data in Staff Table:

1. I n s e r t i n t o S T A F F _ D E T A I L S v a l u e s
(1,’Tarek Hossain’, ’1234asd’,0,’Lib_mgr’);

2. I n s e r t i n t o S T A F F _ D E T A I L S v a l u e s
(2,’Md.Kishor Morol’, ’iloveyou’,0,’Lib_clr’);

All Data of Staff Table:

1. select * from staff_details

Creating Student Table:

1. Create TABLE Student_Details

2. (

3. Student_Idvarchar(10) PRIMARY KEY,

NOTES

Self-Instructional
Material 89

Relational Database
Management Systems

4. Student_Namevarchar(50),

5. Sex Varchar(20),

6. Date_Of_Birth date,

7. Borrower_Idint,

8. Department varchar(10),

9. contact_Numbervarchar(11)

10.)

Inserting Some Data in Student Table:

1. Insert into STUDENT_DETAILS values (’13-23059-
1',’ Ahmed,Ali’,’Male’,’05-Oct-1995',1,’CSSE’,
’01681849871');

2. Insert into STUDENT_DETAILS values (’13-23301-
1', ’MOrol MD.Kishor’,’Male’,’03-Jan-1994',2,
’CSE’,’01723476554');

All Data of Student Table:

1. select *from student_details

Building Relationship between Student and Borrower Table:

1. ALTER TABLE student_details

2. ADD CONSTRAINT borrower_id_FK FOREIGN KEY
(Borrower_Id) REFERENCES Borrower_Details(Borrower_Id);

Checking Full Relationship:

1. s e l e c t s t u d e n t . s t u d e n t _ i d , s t u d e n t .
student_name,book.Book_ Title, staff.
staff_name, b.Borrowed_To

2. f r o m s t u d e n t _ D e t a i l s s t u d e n t , S t a f f _
Detailsstaff, Borrower_Detailsb,book_
details book

3. wherestudent.Borrower_id = b.Borrower
_id and book.ISBN_Code = b.book_id and
b.Issued_by = staff.Staff_id;

Relational Database
Management Systems

NOTES

Self-Instructional
90 Material

Adding Shelf Table:

1. Create Table Shelf_Details

2. (

3. Shelf_idint PRIMARY KEY,

4. Shelf_Noint,

5. Floor_Noint

6.);

Inserting some Data from Shelf Table:

1. Insert into Shelf_DetailsValues (1, 1, 1);

2. Insert into Shelf_DetailsValues (2, 2, 10001);

3. Insert into Shelf_DetailsValues (3, 1, 10002);

All Data in Shelf Table:

1. select*from Shelf_Details;

Adding Relationship between Shelf and Book Table:

1. ALTER TABLE Book_Details

2. ADD(Shelf_Idint);

3.

4. UPDATE Book_Details set Shelf_Id = 1

5. where ISBN_CODE = 4;

6.

7. UPDATE Book_Details set Shelf_Id = 2

8. where ISBN_CODE = 6;

9.

10. ALTER TABLE Book_Details

11. ADD CONSTRAINT Shelf_Id_FK FOREIGN KEY
(Shelf_Id) REFERENCES Shelf_Details
(Shelf_Id);

Combined All Relationship:

1. s e l e c t s t u d e n t . s t u d e n t _ i d , s t u d e n t .
student_name, book.Book_Title, staff.staff
_name, b.Borrowed_To, shelf.shelf_No

NOTES

Self-Instructional
Material 91

Relational Database
Management Systems

2. f r o m s t u d e n t _ D e t a i l s s t u d e n t , S t a f f _
Detailsstaff, Borrower_ Detailsb, book_
detailsbook, Shelf_Details shelf

3. wherestudent.Borrower_id = b.Borrower_
id and book.ISBN_ Code = b.book_id and
b.Issued_by = staff.Staff_id and book.
Shelf_Id = shelf.Shelf_Id;

Student marks sheet processing

Telephone directory

Gas booking and delivering

Electricity bill processing

Bank transaction

Payroll processing

Personal information system

Question database and conducting quiz and personal diary

Implement the Hospital Database and execute the given queries:

Relational Database
Management Systems

NOTES

Self-Instructional
92 Material

Relations (Include All the Necessary Integrity Constraints):

BILLED
BILL NO NUMBER(5) - PRI KEY
PATIENT_NO NUMBER(9)
ITEM_CODE NUMBER(5)
CHARGE NUMBER(7,2)

TREATS
PHY_ID NUMBER(4) - PRI KEY
PATIENT_NO NUMBER(4) - PRI KEY
PROCEDURE_NO NUMBER(4) - PRI KEY
DATE_TREATED DATE - PRI KEY
TREAT_RESULT VARCHAR2(50)

ITEM
ITEM_CODE NUMBER(4) - PRI KEY
DESCRIPTION VARCHAR2(50)
NORMAL_CHARGE NUMBER(7,2)

PHYSICIANS
PHY_ID NUMBER(4) - PRI KEY
PHY_PHONE CHAR(8)
PHY_NAME VARCHAR2(50)

PATIENT
PATIENT_NO NUMBER(4) - PRI KEY
DATE_ADMITTED DATE
DATE_DISCHARAGED DATE
PAT_NAME VARCHAR2(50)
ROOM_LOCATION CHAR(4)

ROOM
ROOM_LOCATION CHAR(4) - PRI KEY
ROOM_ACCOMODATION CHAR(2)
ROOM_EXTENSION NUMBER(4)

PROCEDURES
PROCEDURE_NO NUMBER(4) - PRI KEY
PROC_DESCRIPTION VARCHAR2(50)

	130 54_Prelims.pdf
	Chapter.pdf

